Success of ARNI Continues in 2019: An Update

James L. Januzzi Jr, MD, FACC, FESC
Hutter Family Professor of Medicine, Harvard Medical School
Physician, Cardiology Division, Massachusetts General Hospital
Cardiometabolic Faculty, Baim Institute for Clinical Research

JJanuzzi@partners.org @JJheart_doc
I disclose the following relationships with industry that are relevant to my talk:

- **Grants:** Roche Diagnostics, Prevencio, Novartis, Abbott, Cleveland Heart Labs
- **Consulting:** Roche Diagnostics, Novartis, Janssen
- **Endpoint/DSMB committees:** Abbott, AbbVie, Amgen, Bayer, Boehringer-Ingelheim, Janssen, Pfizer, Takeda
Overactivation of the RAAS and SNS is Detrimental in HFrEF and Underpins the Basis of Therapy

Natriuretic peptide system
NPRs ↔ NPs
Vasodilation
↓ Blood pressure
↓ Sympathetic tone
↑ Natriuresis/diuresis
↓ is
↓ Vasopressin
↓ Aldosterone
↓ Fibrosis
↓ Hypertrophy

RAAS
Ang II → AT₁ R
Vasoconstrictio
n ↑
RAAS activity ↑
Vasopressin ↑
Heart rate ↑
Contractility

β-blockers
Epinephrine
Norepinephrine
α₁, β₁, β₂ receptors

Natriuresis/diuresis
↓
Blood pressure
↓
Sympathetic tone
↓
Aldosterone
↓
Fibrosis
↓
Hypertrophy
↓

Natriuretic peptide systems oppose the RAAS

- **ANP/CNP**
- **BNP**

Natriuretic peptide signaling cascades
- Gene expression; ↑ protein synthesis; ↑ cell proliferation
- Inactive peptides
- Internalization
- Receptor recycling

Vasodilation
- ↑ Cardiac fibrosis/hypertrophy
- ↑ Natriuresis/diuresis

Vasoconstriction
- ↑ Cardiac fibrosis/hypertrophy
- ↑ Sodium/water retention

Inactive NP fragments
- Neprilysin
- NPR-A
- NPR-B
- NPR-C

AT1 receptor
- ANP
- BNP
- CNP
- ANP/CNP
- Ang II

GTP
- cGMP
NEP and vasoactive peptides

Relative affinity for NEP

- ANP / CNP
 - Ang II
 - Ang I
 - Adrenomedullin
 - Substance P
 - Bradykinin
 - Endothelin
 - BNP

NEP and vasoactive peptides

- Inactive fragments or metabolites

Implications for NEP inhibition

- NEP substrates can have opposing biological actions
 - Overall effect is dependent upon the **net effect** on NEP metabolism of multiple substrates
 - Benefits in enhancing NP system may be offset by increased Ang II
 - **Needs to be complemented by simultaneous RAAS suppression**
Sacubitril/valsartan: "blocking the bad and and increasing the good"

Enhancing the natriuretic peptide system

Supressing the RAAS

Inactive NP fragments

Sacubitril

ANP/CNP/BNP

NPR-A

GTP

NPR-B

GTP

Sac/val

NPR-C

BNP

AT1 receptor

Vasoconstriction

↑ Cardiac fibrosis/hypertrophy

↑ Sodium/water retention

Vasodilation

↓ Cardiac fibrosis/hypertrophy

↑ Natriuresis/diuresis

Gene expression; ↑ protein synthesis; ↑ cell proliferation

Receptor recycling

Inactive peptides

Internalization

ANP/CNP/BNP

GTP

cGMP

Nepriysin

ANP

BNP

CNP
The PARADIGM-HF Trial

Patients at Risk

<table>
<thead>
<tr>
<th></th>
<th>LCZ696</th>
<th>Enalapril</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4187</td>
<td>4212</td>
</tr>
<tr>
<td>0-180</td>
<td>3922</td>
<td>3883</td>
</tr>
<tr>
<td>180-360</td>
<td>3663</td>
<td>3579</td>
</tr>
<tr>
<td>360-540</td>
<td>3018</td>
<td>2922</td>
</tr>
<tr>
<td>540-720</td>
<td>2257</td>
<td>2123</td>
</tr>
<tr>
<td>720-900</td>
<td>1544</td>
<td>1488</td>
</tr>
<tr>
<td>900-1080</td>
<td>896</td>
<td>853</td>
</tr>
<tr>
<td>1080-1260</td>
<td>249</td>
<td>236</td>
</tr>
</tbody>
</table>

Kaplan-Meier Estimate of Cumulative Rates (%)

- Enalapril (n=4212): 1117 (26.5%)
- LCZ696 (n=4187): 914 (21.8%)

HR = 0.80 (0.73-0.87)
P = 0.0000004
Number needed to treat = 21

15% at 1 yr
Effect of ARNI on mode of death

Effect of ARNI compared to other RAS inhibitors

Pharmacological Treatment for Stage C HFrEF

<p>| Recommendations for Renin-Angiotensin System Inhibition With ACE Inhibitor or ARB or ARNI |
|---------------------------------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ACE: A</td>
<td>The clinical strategy of inhibition of the renin-angiotensin system with ACE inhibitors (Level of Evidence: A) (9-14), OR ARBs (Level of Evidence: A) (15-18), OR ARNI (Level of Evidence: B-R) (19) in conjunction with evidence-based beta blockers (20-22), and aldosterone antagonists in selected patients (23, 24), is recommended for patients with chronic HFrEF to reduce morbidity and mortality.</td>
</tr>
<tr>
<td>I</td>
<td>ARB: A</td>
<td>In patients with chronic symptomatic HFrEF NYHA class II or III who tolerate an ACE inhibitor or ARB, replacement by an ARNI is recommended to further reduce morbidity and mortality (19).</td>
</tr>
<tr>
<td>III: Harm</td>
<td>ARNI: B-R</td>
<td>ARNI should not be administered concomitantly with ACE inhibitors or within 36 hours of the last dose of an ACE inhibitor (31, 32).</td>
</tr>
<tr>
<td>III: Harm</td>
<td>C-EO</td>
<td>ARNI should not be administered to patients with a history of angioedema.</td>
</tr>
</tbody>
</table>

COR = Class of Recommendations
LOE = Level of Evidence
So, what’s new in 2019?

• Improved understanding of mechanism of action in **chronic** heart failure with reduced ejection fraction

• Expanded role in **acute** heart failure with reduced ejection fraction

• Clarity on the role of ARNI in chronic heart failure with preserved ejection fraction
So, what’s new in 2019?

- Improved understanding of mechanism of action in **chronic** heart failure with reduced ejection fraction

- Expanded role in **acute** heart failure with reduced ejection fraction

- Clarity on the role of ARNI in chronic heart failure with preserved ejection fraction
BNP and NT-proBNP in PARADIGM-HF

- Concentrations of **NT-proBNP generally decrease** after initiation of sacubitril/valsartan.
- Concentrations of **BNP generally increase (by around 20-25%)** after initiation of sacubitril/valsartan.
- This elevation does not “wear off” over time, as all NP concentrations (including NT-proBNP) were falling by 1 year.

Myhre, et al, JACC 2019
Effect of Nepriylisin Inhibition on Various Natriuretic Peptide Assays

Nasrin E. Brukhim, MD, PhD; Ciro P. McCarthy, MB BCh, BAO; Shinya Shouno, MD; Hans K. Gaggin, MD; MPH;1,2
Irene Mukai, BA; Jackie Sayson, MA; Fred S. Apple, PhD; John C. Burnett, Jr, MD;2
Seethalakshmi Iyer, MS PA-C; James L. Januzzi, Jr, MD1,3

ABSTRACT

BACKGROUND: With sacubitril/valsartan treatment, 31-hydroxy natriuretic peptide (31-NP) concentrations increase, it remains unclear whether change in BMP concentrations is similar across all assays for its measurement. Effects of sacubitril/valsartan on atrial natriuretic peptide (ANP) concentrations in patients are unknown. Lastly, the impact of nepriylisin inhibition on pro-regional pro-ANP (npro-ANP), N-terminal pro-BNP (NT-proBNP), proBNP1-65, or C-type natriuretic peptide (CNP) is not well understood.

OBJECTIVES: This study sought to examine the effects of sacubitril/valsartan on results from different natriuretic peptide assays.

METHODS: Twenty-three consecutive stable patients with heart failure and reduced ejection fraction were initiated and titrated on sacubitril/valsartan. Change in ANP, NproANP, BMP (using 3 assays), NT-proBNP (3 assays), proBNP1-65, and CNP were measured over 3 visits.

RESULTS: Average time to 3 follow-up visits was 22.4 , and 84 days. ANP rapidly and substantially increased with initiation and titration of sacubitril/valsartan, more than doubling by the first follow-up visit (4.105%). Magnitude of ANP increase was greatest in those with concentrations above the median at baseline (1.38%) compared with those with lower baseline concentrations (-44%). ANP increases were sustained. Treatment with sacubitril/valsartan led to inconsistent changes in BMP, which varied across methods assessed. Concentrations of NproANP, NT-proBNP, and proBNP1-65 variably declined after treatment, whereas CNP concentrations showed no consistent change.

CONCLUSIONS: Initiation and titration of sacubitril/valsartan led to variable changes in concentrations of multiple natriuretic peptides. These results provide important insights to the effects of sacubitril/valsartan treatment on individual patient results, and further suggest the benefit of nepriylisin inhibition may be partially mediated by increased ANP concentrations. J Am Coll Cardiol 2019;73(11):1273-1284

Heterogeneity of effect on NP assays

Maximal % change after treatment

Maximal rise by 3rd visit

Maximal drop by 2nd visit

Does ANP mediate effects of sacubitril/valsartan?

- ANP concentrations increased in every patient
- Average increase >100% rise
- Patients with higher pre-treatment ANP had a post-treatment increase of >300%

Prospective Study of Biomarkers, Symptom Improvement and Ventricular Remodeling During Entresto Therapy for Heart Failure (PROVE-HF; NCT02887183)

James L. Januzzi MD1,2, Margaret F. Prescott PhD3, Javed Butler MD MPH MBA4, G. Michael Felker MD MHS5, Alan S. Maisel MD6, Kevin McCague MA3, Alexander Camacho PhD1, Ileana L. Piña MD MPH7, Ricardo A. Rocha MD3, Amil M. Shah MD MPH8, Kristin M. Williamson PharmD3, and Scott D. Solomon MD8 on behalf of the PROVE-HF Investigators

1Massachusetts General Hospital, 2Baim Institute for Clinical Research, Boston, MA, USA; 3Novartis Pharmaceuticals, East Hanover, NJ, USA; 4University of Mississippi Medical Center, Jackson, MS, USA; 5Duke University Medical Center and Duke Clinical Research Institute, Durham, NC, USA; 6University of California, San Diego School of Medicine, San Diego, CA, USA; 7Detroit Medical Center, Detroit, MI, USA; 8Brigham and Women’s Hospital, Boston, MA, USA
Methods

- Adult patients with symptomatic HFrEF (LVEF ≤40%) eligible for on-label treatment with S/V were enrolled
- Following discontinuation of ACEI/ARB, S/V was initiated and titrated
- Blood samples (x) were obtained at each study visit for NT-proBNP measurement
- An echocardiogram was performed at baseline, 6- and 12-months, and interpreted by a core lab in a clinically and temporally blinded fashion

Key Inclusion Criteria

- Aged ≥18 years
- Patients with HFrEF who are candidates for on-label sacubitril/valsartan treatment per the standard of care
- NYHA functional class II, III, or IV
- LVEF ≤40% within the preceding 6 months according to any local measurement, and no subsequent documentation of EF >40%
- Stable dose of loop diuretic for the 2 weeks preceding study start

Key Exclusion Criteria

- History of hypersensitivity/allergy or suspected contraindication to ACEI, ARB, or ARNI
- Any angioedema history
- Concomitant use of ACEI therapy, nesiritide, aliskiren, or drugs that may affect absorption of the study medication
- Current or previous treatment with sacubitril/valsartan
- Inadequate washout of other investigational drugs before study initiation
- Enrollment in another clinical trial within 30 days of screening
- Potassium >5.2 mEq/L at screening
- History of malignancy within 1 year
- Pregnancy, lactation, or use of any method of contraception that is not highly effective
- Implantation of CRT/D within 6 months
- Prior or planned heart transplant or LVAD

Rapid and significant reduction of NT-proBNP was observed, with majority of reduction within the first 2 weeks.
Primary endpoint

- From baseline to 12 months, significant correlations were observed between the change in NT-proBNP concentration and cardiac remodeling parameters.

- Parallel latent growth curve analyses demonstrated strong association between early NT-proBNP change and subsequent reverse cardiac remodeling.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pearson r (IQR)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-proBNP (pg/mL) / LVEF (%)</td>
<td>-0.381 (-0.448, -0.310)</td>
<td><.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL) / LVEDVi (mL/m²)</td>
<td>0.320 (0.246, 0.391)</td>
<td><.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL) / LVESVi (mL/m²)</td>
<td>0.405 (0.335, 0.470)</td>
<td><.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL) / LAVi (mL/m²)</td>
<td>0.263 (0.186, 0.338)</td>
<td><.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL) / E/E’</td>
<td>0.269 (0.182, 0.353)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

IQR, interquartile range; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; mL, milliliter; LAVi, left atrial volume index; E/E’, ratio of early diastolic filling velocity and early diastolic mitral annular velocity.
Reverse cardiac remodeling (1)

Baseline to 12 months: all P < .001

BL, baseline; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic volume index
Reverse cardiac remodeling (2)

Baseline to 12 months: all P <.001

LAVi fell from 37.76 to 30.19 mL/m² (mean: 7.57 mL/m²; P <.001)

E/e’ ratio fell from 11.70 to 10.47 (mean: 1.23; P <.001)

LVMi fell from 124.77 to 107.82 g/m² (mean: -16.00 g/m²; P <.001)

BL, baseline; mL, milliliter; LA, left atrial; LAVi, left atrial volume index; E/e’, ratio of early diastolic filling velocity and early diastolic mitral annular velocity; LVMi, left ventricular mass index.
Subgroups of interest

- Reverse cardiac remodeling was comparable in each subgroup of interest

All \(P < 0.001 \) except where noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LS Mean change, BL to 12 months (95% CI)</th>
<th>Parameter</th>
<th>LS Mean change, BL to 12 months (95% CI)</th>
<th>Parameter</th>
<th>LS Mean change, BL to 12 months (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF (%)</td>
<td>+12.8 (+11.05, +14.5)</td>
<td>LVEF (%)</td>
<td>+9.4 (+8.6, +10.3)</td>
<td>LVEF (%)</td>
<td>+9.4 (+8.4, +10.3)</td>
</tr>
<tr>
<td>LVEDVi (mL/m²)</td>
<td>-13.81 (-15.78, -11.83)</td>
<td>LVEDVi (mL/m²)</td>
<td>-11.32 (-12.24, -10.40)</td>
<td>LVEDVi (mL/m²)</td>
<td>-10.99 (-12.21, -9.77)</td>
</tr>
<tr>
<td>LVESVi (mL/m²)</td>
<td>-17.88 (-20.07, -15.68)</td>
<td>LVESVi (mL/m²)</td>
<td>-14.15 (-15.15, -13.15)</td>
<td>LVESVi (mL/m²)</td>
<td>-14.32 (-15.67, -12.97)</td>
</tr>
<tr>
<td>LAVi (mL/m²)</td>
<td>-8.44 (-9.73, -7.15)</td>
<td>LAVi (mL/m²)</td>
<td>-7.06 (-7.54, -6.58)</td>
<td>LAVi (mL/m²)</td>
<td>-7.23 (-7.97, -6.50)</td>
</tr>
<tr>
<td>E/e'</td>
<td>-2.60 (-3.83, -1.37)</td>
<td>E/e'</td>
<td>-0.93 (-1.43, -0.43)</td>
<td>E/e'</td>
<td>-0.46 (-1.32, +0.40); (P = \text{NS})</td>
</tr>
</tbody>
</table>

*NT-proBNP < 600 pg/mL if not hospitalized or < 400 pg/mL if hospitalized within the past 12 months; BNP < 150 pg/mL if not hospitalized or < 100 pg/mL if hospitalized for HF within the past 12 months; BL, baseline; LS, least-square; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; mL, milliliter; LAVi, left atrial volume index; E/E', ratio of early diastolic filling velocity and early diastolic mitral annular velocity; NP, natriuretic peptide.
So, what’s new in 2019?

- Improved understanding of mechanism of action in chronic heart failure with reduced ejection fraction
- Expanded role in acute heart failure with reduced ejection fraction
- Clarity on the role of ARNI in chronic heart failure with preserved ejection fraction
PIONEER: ARNI in acute HFrEF

- Patients admitted to the hospital with acute HFrEF, NYHA class II-IV
- At randomization (between 24 hours and 10 days from initial presentation), hospitalized patients were defined as stable by:
 - SBP ≥100 mmHg for 6 hours prior to randomization, and no symptomatic hypotension
 - No increase (intensification) in IV diuretic dose within 6 hours prior to randomization
 - No IV inotropic drugs for 24 hours prior to randomization
 - No IV vasodilators including nitrates within last 6 hours prior to randomization

- **Primary End Point:** Proportional change in NT-proBNP at weeks 4 and 8

- **Exploratory Clinical Outcome:** Incidence of major CV events, including rehospitalization through day 30

Table 2. Secondary Efficacy and Safety Outcomes.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sacubitril–Valsartan (N = 440)</th>
<th>Enalapril (N = 441)</th>
<th>Sacubitril–Valsartan vs. Enalapril</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory clinical outcomes — no. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite of clinical events</td>
<td>249 (56.6)</td>
<td>264 (59.9)</td>
<td>0.93 (0.78 to 1.10)</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>10 (2.3)</td>
<td>15 (3.4)</td>
<td>0.66 (0.30 to 1.48)</td>
<td></td>
</tr>
<tr>
<td>Rehospitalization for heart failure</td>
<td>35 (8.0)</td>
<td>61 (13.8)</td>
<td>0.56 (0.37 to 0.84)</td>
<td></td>
</tr>
<tr>
<td>Implantation of left ventricular assist device</td>
<td>1 (0.2)</td>
<td>1 (0.2)</td>
<td>0.99 (0.06 to 15.97)</td>
<td></td>
</tr>
<tr>
<td>Inclusion on list for heart transplantation</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Unplanned outpatient visit leading to use of intravenous diuretics</td>
<td>2 (0.5)</td>
<td>2 (0.5)</td>
<td>1.00 (0.14 to 7.07)</td>
<td></td>
</tr>
<tr>
<td>Use of additional drug for heart failure</td>
<td>78 (17.7)</td>
<td>84 (19.0)</td>
<td>0.92 (0.67 to 1.25)</td>
<td></td>
</tr>
<tr>
<td>Increase in dose of diuretics of >50%</td>
<td>218 (49.5)</td>
<td>222 (50.3)</td>
<td>0.98 (0.81 to 1.18)</td>
<td></td>
</tr>
<tr>
<td>Composite of serious clinical events</td>
<td>41 (9.3)</td>
<td>74 (16.8)</td>
<td>0.54 (0.37 to 0.79)</td>
<td></td>
</tr>
</tbody>
</table>
Impact of ARNI on HF hospitalization

30-Day HF Readmission

- Sacubitril/Valsartan
 - 8.0%
 - n=440

- Enalapril
 - 13.8%
 - n=441

HR: 0.56
(95% CI 0.37-0.84)
P=0.005

44%*

5.8% Absolute Risk Reduction

Practical tips regarding in-hospital initiation

- **Education**: Involve nursing and pharmacy early and often

- **Safety**
 - Discontinue ACEi 36 hours before starting sacubitril/valsartan
 - Initiate after patient is receiving less intensive loop diuretic

- It is critical to ensure patient has a supply of drug prior to discharge and their insurance has been addressed
So, what’s new in 2019?

• Improved understanding of mechanism of action in **chronic** heart failure with reduced ejection fraction

• Expanded role in **acute** heart failure with reduced ejection fraction

• Clarity on the role of ARNI in chronic heart failure with preserved ejection fraction
PARAGON-HF

- Randomized trial of 4796 patients with HFpEF
 - ≥ 50 years of age and LVEF ≥ 45%
 - Heart failure signs/symptoms (NYHA Class II–IV) requiring treatment with diuretic(s)
 - Structural heart disease (LAE or LVH by echocardiography)
 - Elevation in natriuretic peptides

Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction

Randomized, double-blind, active comparator trial testing the hypothesis that sacubitril/valsartan, compared with valsartan, would reduce the composite outcome of total HF hospitalizations and CV death.

Primary Endpoint
Composite of total (first and recurrent) HF hospitalizations and CV death

Secondary Endpoints:
- Improvement in NYHA functional classification at 8 months
- Changes in KCCQ clinical summary score at 8 months
- Time to first occurrence of worsening renal function
- Time to all-cause mortality

PARAGON-HF primary results
Recurrent event analysis of total HF hospitalizations and CV death*

Valsartan (n = 2389)
1009 events, 14.6 per 100 pt-years

Sacubitril/valsartan (n = 2407)
894 events, 12.8 per 100 pt-years

Rate ratio 0.87 (95% CI 0.75, 1.01)
p = 0.059

*Semiparametric LWYY method.
HF hospitalizations and CV death

HF hospitalizations

<table>
<thead>
<tr>
<th>Group</th>
<th>Events</th>
<th>Rate ratio 0.85 (95% CI 0.72, 1.00)</th>
<th>p = 0.056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valsartan</td>
<td>797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacubitril/valsartan</td>
<td>690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV death

<table>
<thead>
<tr>
<th>Group</th>
<th>Patients</th>
<th>Hazard ratio 0.95 (95% CI 0.79, 1.16)</th>
<th>p = 0.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valsartan</td>
<td>212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacubitril/valsartan</td>
<td>204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semiparametric LWYY method
Sensitivity and supportive analyses for primary endpoint

Consistent with primary endpoint

<table>
<thead>
<tr>
<th>Sensitivity analysis</th>
<th>Estimate (RR or HR)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analysis LWYY (stratified by region) – adjudicated</td>
<td>RR = 0.87 (0.75, 1.01)</td>
<td>0.059</td>
</tr>
<tr>
<td>Primary analysis (LWYY) including adjudicated urgent HF visits in composite</td>
<td>RR = 0.86 (0.75, 0.99)</td>
<td>0.040</td>
</tr>
<tr>
<td>Investigator reported events (LWYY)</td>
<td>RR = 0.84 (0.74, 0.97)</td>
<td>0.014</td>
</tr>
<tr>
<td>Negative binomial method</td>
<td>RR = 0.87 (0.74, 1.01)</td>
<td>0.066</td>
</tr>
<tr>
<td>Primary analysis LWYY (stratified by country)*</td>
<td>RR = 0.86 (0.75, 0.997)</td>
<td>0.045</td>
</tr>
<tr>
<td>Time to first composite event (CV death or HF hospitalization)</td>
<td>HR = 0.92 (0.81, 1.03)</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*Post-hoc analysis; LWYY, Lin, Wei, Yang, Ying; RR, rate ratio.
Secondary endpoints

<table>
<thead>
<tr>
<th></th>
<th>Sacubitril/valsartan N = 2316</th>
<th>Valsartan N = 2302</th>
<th>Effect size (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA functional classification at 8 months
Change from baseline (%)</td>
<td>Improved 15.0%
Unchanged 76.3%
Worsened 8.7%</td>
<td>Improved 12.6%
Unchanged 77.9%
Worsened 9.6%</td>
<td>OR for improvement 1.45 (1.13, 1.86)</td>
<td>0.004</td>
</tr>
<tr>
<td>KCCQ clinical summary score at 8 months
Change from baseline (SE)</td>
<td>-1.6 (0.4)</td>
<td>-2.6 (0.4)</td>
<td>LSM of difference = 1.03 (0.00, 2.1)</td>
<td>0.051</td>
</tr>
<tr>
<td>KCCQ responder
(> than 5-point improvement)</td>
<td>33.0%</td>
<td>29.6%</td>
<td>OR = 1.30 (1.04, 1.61)</td>
<td>0.019</td>
</tr>
<tr>
<td>Worsening Renal Function
Composite of renal death, reaching ESRD, or ≥50% decline in eGFR relative to baseline.</td>
<td>1.4%</td>
<td>2.7%</td>
<td>HR = 0.50 (0.33, 0.77)</td>
<td>0.002</td>
</tr>
<tr>
<td>All-cause mortality (%)</td>
<td>14.2%</td>
<td>14.6%</td>
<td>HR = 0.97 (0.84, 1.13)</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Pre-specified subgroups for primary endpoint
Evidence for overall heterogeneity

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of events /patients</th>
<th>Rate ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1903/4796</td>
<td>0.87 (0.75–1.01)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 65 years</td>
<td>276/825</td>
<td>0.99 (0.64–1.53)</td>
</tr>
<tr>
<td>65 years or older</td>
<td>1627/3971</td>
<td>0.85 (0.73–0.99)</td>
</tr>
<tr>
<td>Less than 75 years</td>
<td>938/2597</td>
<td>0.82 (0.66–1.02)</td>
</tr>
<tr>
<td>75 years or older</td>
<td>965/2199</td>
<td>0.92 (0.76–1.11)</td>
</tr>
<tr>
<td>Sex*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>980/2317</td>
<td>1.03 (0.85–1.25)</td>
</tr>
<tr>
<td>Female</td>
<td>923/2479</td>
<td>0.73 (0.59–0.90)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>1542/3907</td>
<td>0.83 (0.71–0.97)</td>
</tr>
<tr>
<td>Black</td>
<td>89/102</td>
<td>0.69 (0.24–1.99)</td>
</tr>
<tr>
<td>Asian</td>
<td>237/607</td>
<td>1.25 (0.87–1.79)</td>
</tr>
<tr>
<td>Other</td>
<td>35/180</td>
<td>1.03 (0.47–2.28)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>478/559</td>
<td>0.80 (0.57–1.14)</td>
</tr>
<tr>
<td>Latin America</td>
<td>83/370</td>
<td>1.33 (0.75–2.36)</td>
</tr>
<tr>
<td>Western Europe</td>
<td>544/1390</td>
<td>0.69 (0.53–0.89)</td>
</tr>
<tr>
<td>Central Europe</td>
<td>466/1715</td>
<td>0.97 (0.76–1.24)</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>332/762</td>
<td>1.10 (0.79–1.52)</td>
</tr>
</tbody>
</table>

Multivariate interaction p < 0.05.
Significant Heterogeneity in Multivariate Analysis by Ejection Fraction and Sex

Only interactions for sex and ejection fraction remained nominally significant.

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of events/patients</th>
<th>Rate ratio (95% CI)</th>
<th>Primary endpoint</th>
<th>Multivariable interaction p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>980/2317</td>
<td>1.03 (0.85–1.25)</td>
<td></td>
<td>P < 0.006</td>
</tr>
<tr>
<td>Female</td>
<td>923/2479</td>
<td>0.73 (0.59–0.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at or below median (57%)</td>
<td>1048/2495</td>
<td>0.78 (0.64–0.95)</td>
<td></td>
<td>P = 0.03 (categorical)</td>
</tr>
<tr>
<td>above median (57%)</td>
<td>855/2301</td>
<td>1.00 (0.81–1.23)</td>
<td></td>
<td>P = 0.002 (continuous)</td>
</tr>
</tbody>
</table>
Treatment effect by ejection fraction quartiles
Primary composite total HF hospitalizations and CV death

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Events/Patients</th>
<th>Rate Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1903/4796</td>
<td>0.87 (0.75–1.01)</td>
</tr>
<tr>
<td>EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td><=50</td>
<td>512/1208</td>
<td>0.82 (0.63–1.06)</td>
</tr>
<tr>
<td>>50–57</td>
<td>536/1287</td>
<td>0.77 (0.57–1.03)</td>
</tr>
<tr>
<td>>57–63</td>
<td>467/1202</td>
<td>0.91 (0.68–1.22)</td>
</tr>
<tr>
<td>>63</td>
<td>388/1099</td>
<td>1.09 (0.80–1.47)</td>
</tr>
</tbody>
</table>
Effect of ARNI across spectrum of HF

The benefits of sacubitril/valsartan are preserved across a wide spectrum of HF, with greatest benefits seen in those with LVEF <60%.

Less benefit in those with LVEF >60% may relate to the specific diagnoses present in this heterogeneous patient population: HCM, amyloid, ischemia.
So, what’s new in 2019?

• Improved understanding of mechanism of action in **chronic** heart failure with reduced ejection fraction

• Expanded role in **acute** heart failure with reduced ejection fraction

• Clarity on the role of ARNI in chronic heart failure with preserved ejection fraction
Conclusions

• Across a wide range of HF presentations, treatment with sacubitril/valsartan is associated with improved clinical outcomes

• A better understanding is now established regarding the mechanism of benefit from sacubitril/valsartan and its role in acute HFrEF

• The success of sacubitril/valsartan (and other drugs) to reduce risk in HFpEF largely depends on the phenotype of the patient being treated
Success of ARNI Continues in 2019: An Update

James L. Januzzi Jr, MD, FACC, FESC
Hutter Family Professor of Medicine, Harvard Medical School
Physician, Cardiology Division, Massachusetts General Hospital
Cardiometabolic Faculty, Baim Institute for Clinical Research

JJanuzzi@partners.org @JJheart_doc